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Abstract Background: A basic requirement for artificial intelligence (AI)ebased image anal-

ysis systems, which are to be integrated into clinical practice, is a high robustness. Minor

changes in how those images are acquired, for example, during routine skin cancer screening,

should not change the diagnosis of such assistance systems.

Objective: To quantify to what extent minor image perturbations affect the convolutional neu-

ral network (CNN)emediated skin lesion classification and to evaluate three possible solu-

tions for this problem (additional data augmentation, test-time augmentation, anti-aliasing).

Methods: We trained three commonly used CNN architectures to differentiate between der-

moscopic melanoma and nevus images. Subsequently, their performance and susceptibility

to minor changes (‘brittleness’) was tested on two distinct test sets with multiple images per

lesion. For the first set, image changes, such as rotations or zooms, were generated artificially.

The second set contained natural changes that stemmed from multiple photographs taken of

the same lesions.

Results: All architectures exhibited brittleness on the artificial and natural test set. The three

reviewed methods were able to decrease brittleness to varying degrees while still maintaining

performance. The observed improvement was greater for the artificial than for the natural test

set, where enhancements were minor.

Conclusions: Minor image changes, relatively inconspicuous for humans, can have an effect on

the robustness of CNNs differentiating skin lesions. By the methods tested here, this effect can

be reduced, but not fully eliminated. Thus, further research to sustain the performance of AI

classifiers is needed to facilitate the translation of such systems into the clinic.

ª 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Artificial intelligence (AI)ebased image classification by

convolutional neural networks (CNNs) has the potential

to assist clinicians with diagnostic tasks that are based

on the visual inspection of potentially malignant lesions.

In experimental settings, CNNs have achieved perfor-

mances in medical image classification tasks that were
on par or even exceeded the results obtained by human

experts [1e4]. In particular, CNNs have shown very

promising results in macroscopic and microscopic skin

lesion classification, both individually [5e12,44,45] and

as assistance systems for dermatologists [13e16]. And

while such systems are as of yet, mostly unable to pre-

dict malignant oncologic transformations due to a lack

of prospective training data [47], they are already used in
practice. In fact, CNN-based systems have begun to

enter clinical dermatological practice as skin cancer

screening tools, for example, as a market-approved

computer-aided diagnostic (CAD) system [17], which

has demonstrated superior performance to more con-

ventional CAD systems [18].

While CNN-based image analysis has advantages

over human observation with respect to objective and
quantitative feature extraction, an obvious drawback is

that in contrast to human experts, CNNs have difficulty

distinguishing biologically significant features from

insignificant features and artifacts. Depending on the

data set that is used for CNN training, spurious and

unwanted correlations within the training set can be
picked up and hamper generalization [19,20,46]. More-
over, deceptively created input images specifically

designed to fool a CNN (adversarial attacks) have been

shown to pose a real threat [21]. Both shortcomings also

apply to CNNs in the field of dermatology [22e25].

Another observed shortcoming is the brittleness of

modern CNNs in image analysis. Brittleness in this

context refers to the phenomenon that small changes in

the input image, such as scaling or rotation, can have a
large effect on the classification of the CNN. It is

therefore different to adversarial attacks, as image

changes are not designed to deceive the CNN, but reflect

fluctuations in image acquisition occurring in daily

clinical routine. The resulting vulnerability of AI-based

tools contradicts the assumption that CNNs are

invariant to small transformations and is reported in the

machine learning community [24e28]. As this lack of
robustness and reliability may have a detrimental effect

in a clinical setting, it needs to be overcome to facilitate

the successful translation of AI-based diagnostic tools

into routine clinical care.

In this study, we investigate the brittleness of

three commonly used CNN architectures, which

could serve as backends of CNN-based diagnostic

systems, by testing them on images that have un-
dergone transformations, which model variations

that may occur when dermatologists photograph

suspicious skin lesions. Moreover, we investigate

three possible techniques (data augmentation, test

time augmentation, anti-aliased networks) regarding

http://creativecommons.org/licenses/by-nc-nd/4.0/
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their effectiveness in solving the problem of CNN

brittleness.
2. Materials and methods

2.1. Study design

We trained three commonly used CNN architectures

(ResNet50, DenseNet121, VGG16) to distinguish be-

tween dermoscopic nevus and melanoma images. To

establish the models’ susceptibility to image changes,

each classifier was evaluated on a test set containing

unmodified, original images and several additional sets

containing duplicated images that were digitally modi-
fied. Transformations were chosen to mimic events,

which might occur in a clinical setting. Moreover, the

magnitude of transformations was limited to an extent

which would not render the lesion unrecognizable for a

physician. Subsequently, a range of pre-existing

methods which address AI brittleness were tested to

assess if they are indeed effective in reducing brittleness

without impairing performance.
As the test set transformations described above were

artificial, the models and methods were additionally

tested on an independent test set where at least two

dermoscopic images with natural changes resulting from

differences in real-life image acquisition were available

for each lesion.

Ethics approval was waived by the ethics committee

of the University of Heidelberg, as images were open
source and anonymous.
2.2. Data sets

Dermoscopic images were obtained from the ISIC

archive [29], the HAM10000 data set [30], the PH2 data

set [31], the SKINL2 data set [32], the BCN20000 data

set [33], and PROP, a proprietary data set. The training

set was made up exclusively of ISIC, HAM10000, and

BCN20000 images. The artificial test set consisted of a

holdout component in ISIC and an external component

in PH2 and SKINL2. Similarly, the natural test set
consisted of a holdout component in BCN20000 and an

external component in PROP. Exact details on training

and test set composition are listed in Supplementary

Table 1.

The artificial test set was duplicated 11 times. Each of

the 11 duplicated sets was modified according to one

previously defined transformation type and magnitude.

Available types were a change in orientation, zoom, or
brightness. In addition, the artificial test set was dupli-

cated six more times, but this time combinations of

transformations were applied and the magnitude was

increased (see Supplementary Methods and

Supplementary Fig. 1).
The additional natural test set contained at least two

separately taken dermoscopic images per lesion. Thus,

the changes between these images were not produced

retrospectively using a computer. As this makes it

impossible to define an original test set against which

deviations should be measured, all possible image

combinations were compiled and evaluated. Because

different photographs of the same lesion often looked
extremely different, e.g. because of an altered zoom by

more than 50%, images for each lesion were manually

sorted into similarly looking groups using the four-eyes

principle.

2.3. Classifier development

All classifiers, regardless of architecture, were trained

using the same training set and protocol. Furthermore,

all architectures had the same set of fully connected
layers on top of the individual feature extractor, which

was made up of fastai’s [34] default custom head. Online

data augmentation was applied during training, where

the type and magnitude of augmentations were adapted

from the fastai library, which has sensible preset values.

For exact details on the training procedure and used

augmentations, see Supplementary Methods.

All work was carried out in Python 3.7.7 using fastai
1.0.61 in combination with torch 1.5.1 [35] and torch-

vision 0.6.1. Training was carried out on a single NVI-

DIA GeForce RTX 2080 Ti.

2.4. Methods to reduce brittleness

Three methods were tested for their effectiveness against

brittleness. The first approach used a more extreme form

of data augmentation during the training stage, where
the magnitudes of the applied transformations were

increased. The second approach used test-time

augmentation during the inference stage. Instead of

the model just rating one version of an input image, it

rates a collection of slightly modified duplicates and

averages the output. In our case, eight modified dupli-

cates were rated, which were transformed using a flip

coupled with a zoom into all four image corners. These
transformations were set to be deterministic to allow

reproducibility. The third approach replaced the orig-

inal model architecture by an anti-aliased architecture,

which reduces anti-aliasing effects in downsampling

layers (strided convolutions, max-/average-pooling) [24].

This is achieved by upgrading all downsampling layers

to include a low-pass filter. While originally intended to

address shift-invariance, a general positive effect on
model robustness was observed [24].

2.5. Analysis

To obtain robust performance estimates that encompass

the stochastic nature of the training process, each
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training and evaluation run was repeated five times.

Thus, all calculated metrics are averaged over five runs.

Classifier performance was captured using the area

under receiver operating characteristic (AUROC). As

the receiver operating curve shows the sensitivity and

specificity of a dichotomous outcome for all possible

classification thresholds, the area under this curve pro-

vides a single summary measure, which captures a
classifier’s overall performance. The classifiers’ suscep-

tibility to change was measured using P(class change)

and mean absolute change, two metrics adapted from

Ref. [27]. P(class change) represents the probability that

the classifier changes its prediction from melanoma to

nevus or vice versa, after the input image is transformed.

This measure is independent of small confidence fluc-

tuations, which do not have an impact on the classifi-
cation, e.g. when a model changes its lesion diagnosis

from 95% nevus to 85% nevus, this change is ignored by

P(class change). Mean absolute change measures by how

much on average the model’s output probability changes

after the input image is transformed. This metric allows
Fig. 1. Individual performance and brittleness metrics for the baseline R

shows the absolute change distribution over each artificially transform

absolute change. Middle row and bottom row show the mean P(cla

artificially transformed test set. In addition, the AUROC for the unm

architectures were similar (see Supplementary Figs. 1 and 2).
us to verify if class changes are mainly a result of lesions

being diagnosed divergently when the model was unsure

to begin with. For a robust classifier, both metrics

should be minimised.
3. Results

3.1. Baseline performance and brittleness

All baseline CNNs achieved an AUROC of approxi-
mately 0.9. This was comparable with the AUROCs

obtained across the 11 artificially transformed test sets

(see Fig. 1, Supplementary Figs. 1 and 2). For

ResNet50, the mean absolute change varied from

2.9% � 0.4% to 11.2% � 1.2% and resulted in a P(class

change) ranging from 3.5% � 0.9% to 12.2% � 1.6%.

Variations in mean absolute change and P(class change)

were slightly lower for DenseNet121, with VGG16
showing the lowest variation out of all three architec-

tures (see Supplementary Figs. 1 and 2).
esNet50 model across all artificially transformed test sets. Top row

ed test set. The grey line within the box plot indicates the mean

ss change) and AUROC, respectively, for each individually and

odified test set is shown as a dashed line. Results for the other
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Averaging performance and robustness metrics

across all twelve artificial test sets shows that both

metrics were always better on the holdout than on the

external test set regardless of used architecture (see

Supplementary Table 2). Moreover, there was a clear

ranking between architectures with VGG16 having the

best overall performance and brittleness scores, followed

by DenseNet121 and ResNet50.

3.2. Effectiveness of tested methods on artificial

transformations

The three tested methods, which were additional data

augmentation, test-time augmentation and anti-aliasing,

were able to reduce overall brittleness when applied
Fig. 2. Average performance and brittleness metrics across all artificial

individual transformations. The three proposed methods, ADA, TTA an

established on all individually transformed test sets and averaged. BM

time augmentation, AAM: anti-aliased model.
individually and especially when used in combination.

This was true for all three architectures to a similar

extent and did not result in performance deterioration

(see Fig. 2). Depending on the type of transformation

that was applied to the test set, the used methods

showed varying degrees of effectiveness. Generally,

larger improvements were observed for rotations and

zooms than for brightness (see Supplementary Fig. 4).
When combining the artificial transformations to act

on an image together, brittleness increased even more

and performance deteriorated slightly. However, all

reviewed methods were still effective in reducing brit-

tleness while upholding performance (see Fig. 3).

Regardless whether the artificial transformations were

used individually or in combination, additional data
ly transformed test sets for the various method combinations using

d AAM were tested individually and in combination. Metrics were

: baseline model, ADA: additional data augmentation, TTA: test-



Fig. 3. Average performance and brittleness metrics across all artificially transformed test sets for the various method combinations using

combined transformations. The three proposed methods, ADA, TTA and AAM were tested individually and in combination. Metrics were

established and averaged over all transformed test sets, which were modified using a combination of individual transformations. BM:

baseline model, ADA: additional data augmentation, TTA: test-time augmentation, AAM: anti-aliased model.
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augmentation and test-time augmentation always showed

improvements for brittleness and were most effective

when applied in combination. Anti-aliasing worked well
forResNet50 andDenseNet121; however, the anti-aliased

VGG16 suffered an increase in brittleness.

3.3. Effectiveness of tested methods on natural

transformations

Average performance and brittleness of all three baseline

models on the natural test set was in-between that of the
artificial test set with individual transformations and the

artificial test set with combined transformations. How-

ever, effectiveness of the employed methods was far less

pronounced on the natural test set than on either of the
two artificial test sets (see Fig. 4). Trends were less

consistent and while one method showed improvements

for a certain architecture, it did not do so for another. For
example, ResNet50 experienced slightly worse brittleness

with additional data augmentation while DenseNet121

did not. Regardless of architecture, test-time augmenta-

tion always improved both performance and brittleness.
4. Discussion

4.1. Practical implications

This study demonstrated brittleness i.e. vulnerability of

CNNs toward small input changes for three commonly



Fig. 4. Performance and brittleness metrics across the natural transformed test set for the various method combinations. The three proposed

methods, ADA, TTA and AAM, were tested individually and in combination. BM: baseline model, ADA: additional data augmentation,

TTA: test-time augmentation, AAM: anti-aliased model.
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used CNN architectures (ResNet50, DenseNet121,

VGG16). Although this phenomenon has been reported

throughout the machine learning community, its po-

tential impact on AI-based assistance systems in the

clinic has not received proper attention [24e28]. We
reviewed three different methods to reduce brittleness

(additional data augmentation, test-time augmentation,

anti-aliasing) and found them to be partially effective on

artificial image transformations such as rotations,

altered brightness or zooms, but less so on natural image

transformations resulting from image acquisition

differences.

For our models, we chose architectures and training
techniques that are commonly used throughout image

classification tasks for skin cancer [6,15,36] and other
cancer subtypes [2,37e40]. Thus, we believe our baseline

models to be suitably representative of existing or future

models, which could serve as the backbone of a diag-

nostic system.

While the change of diagnosis i.e. P(class change) is
independent of monotonic confidence fluctuations and

intuitive to grasp, we also consider the mean absolute

change. In a clinical setting, it is unlikely that an assis-

tance system, which solely presents a plain diagnosis

such as melanoma, will be accepted by physicians or

patients. Inclusion of the model’s confidence level may

increase trust in the system as it enables the physician to

judge the weight he/she should attribute to the model’s
classification. Low-confidence decisions by the system

would therefore be less likely to influence the physician’s
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management decision to begin with. In such a setting,

brittleness would be partially compensated as the

observed confidence changes would often only alter the

CNN’s classification if its confidence was low to begin

with. If, however, high-confidence classifications show

these fluctuations, the range of confidences for similar

images can be highly disconcerting to the physician.

The techniques we evaluated to reduce brittleness,
namely additional data augmentation, test-time

augmentation and anti-aliasing, substantially reduced

this phenomenon in an artificial setting, but even when

used in combination did not completely eliminate it.

Depending on the architecture, some methods worked

better than others; for example, anti-aliasing did not

reduce brittleness for VGG16. When all three methods

were used in combination, brittleness and performance
always improved in comparison with the baseline model.

The observed improvement was much more limited

on naturally transformed images. Even when combina-

tions were applied, improvements were minor or non-

existent. Fig. 5 shows a selection of natural image pairs

where our models, regardless of the applied method,

always came to a divergent diagnosis on an image pair

of the same lesion, even though some of the paired im-
ages appear almost identical. Thus, it may hardly be

possible for a physician to determine how to photograph

a lesion ‘correctly’, which they intend to diagnose with a

CNN-based lesion classification system. Such problems

limit the applicability of the technology in the clinic and

therefore have to be solved.
Fig. 5. Natural image pairs for selected lesions where models disagreed

possible combinations of proposed methods (i.e. BM, BM þ ADA, BM

the selected image pairs received the same diagnosis. BM: baselin

augmentation, AAM: anti-aliased model.
Against this background, we would like to inform

physicians to not consider CNN-based systems as error

free and be aware of such limitations. We also want to

encourage deep learning practitioners to actively

minimise brittleness on a case-by-case basis in the same

way performance is optimised. The reported improve-

ments could be further enhanced through method-

specific optimisations, alternative techniques for
robustness [41,42] or an ensemble-approach, which

showed even better improvements than model-specific

techniques (see Supplementary Table 3). Finally,

future work should also investigate alternatives, which

do not solely focus on the training/inference procedure

or on architectural modifications but rather on other

architectures such as Capsule Neural Networks [43]

which could be better suited to handle small affine
transformations.

4.2. Limitations

The artificial image changes were designed in such a way
as to be relatively inconspicuous to a human observer.

The inconspicuousness was determined using the four-

eye principle and is therefore subjective. But even if

images changes are not deemed as inconspicuous, such

transformations are still likely to arise in a clinical

setting and therefore any CNN-based system should be

invariant against such changes.

The natural test set contained multiple photographs
per lesion, where some looked extremely distinct, to the

point where there was no overlap between images. Thus,
constantly. Each lesion was photographed twice and rated by all

þ TTA, AAM, etc.). Regardless of the applied method, none of

e model; ADA: additional data augmentation, TTA: test-time
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suitably similar image pairs for each lesion were

manually chosen using the four-eye principle. As this

was largely subjective, the reported results for the nat-

ural test set could change depending on how the images

are sorted.

5. Conclusions

Minor image changes, relatively inconspicuous for

humans, can have an effect on the confidence and

diagnosis of CNNs differentiating skin lesions. Using

the methods tested here, this effect was reduced but not
fully eliminated. Therefore, we would like to remind

deep learning practitioners and physicians in derma-

tology but also in medicine in general, that brittleness

needs to be explicitly targeted and overcome to facilitate

translation from bench-to-bedside.
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